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Abstract

This paper investigates the scattering from impedance strips and

impedance-loaded conducting strips. The impedance strips are analyzed using

Senior's impedance half plane formulation. Once the primary diffraction from the

impedance half plane is presented, it is used to develop multiple diffraction

mechanisms on an impedance strip. The scattering from impedance-loaded strips

are analyzed using Maliuzhinets' impedance wedge formulation. The primary

diffraction mechanism from an impedance wedge is used to develop the multiple

diffractions on an impedance double wedge. The multiple diffractions on both

types of strips are developed using the Extended Spectral Ray Method.

Sample calculations are made for impedance strips and impedance-loaded

strips for a large purely capacitive impedance, a large purely inductive impedance,

a large real impedance, and a small real impedance.

Measurements are made for impedance strips and impedance loaded strips

and are used to compare against predictions. The impedance materials used are

two magnetic radar absorbing materials and two resistive materials.
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A RIGOROUS UNIFORM DIFFRACTION ANALYSIS OF THE

ELECTROMAGNETIC SCATTERING FROM IMPEDANCE EDGES AND

JUNCTIONS

L Introduction

Background

Radar. A radar operates by emitting energy in the form of an

electromagnetic wave. When the emitted wave strikes an object, the object

scatters the energy in all directions. The energy scattered toward the radar is

received and may provide information concerning the object's position and

velocity relative to the radar.

Radar Cross Section. Radar cross section (RCS) is a quantity denoting the

amount of incident energy scattered by an object in a certain direction. The RCS

of an object is a function of the transmitting antenna's polarization, the receiving

antenna, frequency, relative orientation of the object and the radar, as well as the

object's shape, size, and material properties. On the other hand, RCS is

independent of range. The mathematical definition of RCS is

E 2 (1.1)

a .
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where R is the distance between the radar and the object, E. is the scattered field,

and Ei is the incident field at the object.

RCS Reduction. Reducing an object's RCS decreases the ability of a radar

to detect the object. Therefore, if an aircraft's RCS is reduced to a minimum, the

survivability of the aircraft during a mission is increased. The four methods to

reduce an object's RCS are shaping, radar absorbing material or radar absorbing

structure (RAM and RAS), active cancellation, and passive cancellation (10:190).

The objective of shaping is to mold the object's surfaces and edges to

deflect the scattered energy away from the radar. The disadvantages of shaping

are the RCS is increased in the deflected direction, and desirable low RCS shapes

may not be aerodynamic. Therefore, the designer of the shaped object must

decide on directions where the increased RCS will not increase the probability of

detection. For military aircraft, the airframe is shaped to deflect the energy to the

side or to the back of the aircraft. Also, the airframe is designed to eliminate

known sources of high RCS such as dihedral and trihedral shapes.

Radar absorbing material, which is applied to the surface of the object or

aircraft, may convert the scattered energy into heat and/or form a destructive

interference pattern to cancel the scattered energy. Sufficient absorption over a

wide frequency range usually implies bulky electric absorber or heavy magnetic

absorbers. Therefore, RAM decreases the performance of the aircraft. A radar

absorbing structure (RAS) differs from RAM in that it is not an add-on

treatment. A final disadvantage of RAM and RAS is high cost and complexity of

the materials.
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Active cancellation is the process of the aircraft detecting the incident

energy - specifically its frequency, polarization, and angle of arrival - then

predicting the scattered energy so interfering energy can be transmitted to cancel

the scattered energy in the direction of the radar. This technique is difficult to

implement considering the required energy for interference must be predicted and

then transmitted.

Passive cancellation involves the application of impedance loads on the

surface of the object to alter the characteristics of the scattered energy (2). The

effect of the impedance load is to change the frequency response of the object by

producing scattering sources which form destructive interference at certain

frequencies, but not at others (4:1.4). The effect on the RCS pattern is a

reduction in the sidelobe levels and mainlobe level and the creation of nulls in

the pattern. Haupt and Liepa (3:57) calculated a 15 dB decrease in the edge-on

scattering of a conducting strip by applying a parabolically tapered resistive load.

The main disadvantage of impedance loading is that it is very frequency

dependent. A main advantage of impedance loading is its potential to design low

sidelobe antennas and low RCS structures.

This thesis will develop an accurate and computer efficient method to

predict the scattering from impedance strips and conducting strips which are

loaded with constant impedance strips.
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Historical Development

Method of Moments. The method of moments can be used to solve for

the currents induced on an object by an incident wave. From the induced

currents, the scattered field can be calculated. Method of moments has been used

to predict the scattering from resistive strips (14;17;22) and resistively loaded

conducting strips (4). The method of moments is accurate, but not computer

efficient. The method requires the object to be partitioned into sections which

are fractions of a wavelength long. If the frequency of the incident wave is large,

the object must be split up into many subsections. The method forms a linear

system of N equations with N unknowns, where N is the number of subsections.

The next step is to solve the system of equations using matrix theory. This

requires a computer program to invert the N by N matrix. The inversion of

matrices by a computer requires a great amount of computer time.

High Frequency Techniques. High frequency techniques

use asymptotic series expansions and asymptotic integral evaluations to predict the

scattering from objects. High frequency techniques are accurate for electrically

large targets.

The geometrical theory of diffraction (GTD) developed by Keller (9) was

the first high frequency technique to predict the scattering from perfectly

conducting wedges. GTD uses ray tracing and yields shadowed and lit regions. At

the boundaries of the shadow and lit regions, singularities in the fields exist.

GTD is accurate, except in the vicinity of the shadow boundaries. The field

singularities at the shadow boundaries were eliminated by Kouyoumjian and

1.4



Pathak (11) who introduced transition functions which force the fields to the

correct (continuous) values across the shadow boundaries. This method is called

the Uniform Theory of Diffraction (UTD).

Herman (5) has developed the diffracted fields from an impedance half

plane and an impedance wedge using impedance boundary conditions (16). Using

the Extended Spectral Ray Method, he developed the secondary diffraction

mechanisms on impedance strips and impedance double wedges. The analysis

accounts for the surface waves which are predicted by electromagnetic wave

theory to exist when energy is incident on impedance materials. The impedance

double wedge formulation was used to predict the scattering from impedance

cylindrical polygons, impedance inserts in full plane structures, and thick

impedance half planes.

Problem Statement

Accurate and computer efficient predictions of the scattering from 2

dimensional conductive strips with constant impedance loads are needed for the

analysis of passive cancellation techniques for radar cross section reduction and

for the analysis and design of low sidelobe parabolic reflector antennas.

The objectives of this thesis are to:

1. Develop computer subroutines that calculate the 2 dimensional edge

diffraction of impedance edges and junctions.

2. Use the developed subroutines to predict the scattering patterns of 2

dimensional conductive strips with constant impedance loads and 2

1.5



dimensional impedance strips. Verify the accuracy of the subroutines

against measurements.

3. Perform experimental work to verify the 2 dimensional scattering

predictions.

Summary. f Remaining Chaters

Chapter II explains the Impedance Boundary Conditions used in this thesis.

Chapter III presents the development of the non-uniform primary

diffraction mechanisms and uniform secondary diffraction mechanisms used to

predict scattering from impedance edges and junctions. Also, the modifications to

the secondary diffraction mechanisms for planar surfaces are presented.

In Chapter IV, scattering predictions of impedance strips and impedance

loaded perfectly conducting strips are investigated. Specifically, the scattering

characteristics of purely inductive, purely capacitive, large non-reactive

impedances and small non-reactive impedance strips and impedance loaded strips

are presented.

In Chapter V, the accuracy of the scattering predictions for impedance

strips and loaded impedance conducting strips are compared to measurements.

Finally, chapter VI presents a summary and conclusions. Recommendations

for areas of further research are presented.
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II. Impedance Boundary Conditions

This chapter investigates the Impedance Boundary Condition (IBC) which

is an approximate boundary condition used in the analysis of electromagnetic

problems. In a continuous media, Maxwell's equations are used to solve for the

fields, which are assumed to be single-valued, bounded, and continuous. When

two media with different electrical properties meet, the fields are no longer

continuous at the interface of the two media. To solve for the fields on either

side of the interface, the boundary conditions are used. Therefore using

Maxwell's equations and boundary conditions, the fields for a two media problem

can be solved.

General Boundary Conditions

The general boundary conditions are the classical boundary conditions

applied at the interface between two media. Consider the situation of a finite

body in free space with fields E., Ho, outside and E, H inside the body. To solve

for the fields, the boundary value problem must be solved at the surface of the

body using the general boundary conditions:

n X (E-E ) = -M8 (2.1)

n X (H- H) =J (2.2)

n " (OD- D) =q, (2.3)

2.1



n .(B. - B) =- q. (2.4)

where

Ms= magnetic surface current

s= electric surface current

q,,= electric surface charge

q = magnetic surface charge

n = outward normal unit vector

Given the permittivity and permeability and geometry of the body it is

possible to solve for all the fields. The solution is rigorous so it is desirable to

develop another set of boundary conditions which are approximate, but accurate

to a tolerable error. An approximate set of boundary conditions are the

impedance boundary conditions.

Approximate Boundary Conditions

Approximate boundary conditions are used to simplify the numerical

analysis of the fields when a complex structure is inside a media. The structure

may be inhomogeneous, anisotropic, and have an arbitrary shape. The

approximate boundary conditions simplify the numerical analysis by transforming

the two media problem into a one medium problem. The material characteristics

and geometry of the complex structure are accounted for in the analysis by one

quantity which relates the fields at the interface. One such approximate boundary

2.2



condition is the Impedance Boundary Condition (IBC). This IBC has been

applied to impedance wedges and impedance half planes.

Half S Impedance Boundary Condition(16). The Impedance Boundary

Condition was developed by Leontovich for the analysis of a plane wave incident

on an infinite half space. Since the half space is infinite in extent, the Impedance

Boundary Condition assumes the fields penetrating the boundary do not reemerge

at some point on the boundary. The IBC is

nX(nXE) = -qZ.nXH (2.5)

where

n = outward normal unit rector of the half space

E = Electric field just above the interface

H = Magnetic field just above the interface

q= the quantity accounting for the electrical properties of the material

half space, called the surface impedance.

Zo = the characteristic impedance of the surrounding media.

Figure 2.1 graphically shows the boundary where the IBC is applied. The IBC

transforms the impedance half space into an equivalent impenetrable impedance

surface with a surface impedance of q.

The surface impedance, q, is a quantity which is not given a value by

Leontovich. It depends on the electrical properties of the boundary where the

2.3
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Figure 2.1. Impedance half space modelled as an equivalent impedance surface.

approximate boundary condition is applied. Therefore, the surface impedance is a

quantity which must be modelled by the user and usually involves an

approximation.

One way to derive an appropriate surface impedance, ij, is to demand that

the equivalent impedance surface satisfying Eq (2.5) reproduce the same reflected

field as the half space does. In doing so for the planar half space, the value of

the surface impedance can be approximated as

2.4



(2.6)

where

= the complex permittivity of the half space

M = the complex permeability of the half space

The use of a constant value for q does not allow the equivalent impedance

surface to produce the correct reflected field as the angle of incidence varies.

However, if the refractive index of the material half space is large in magnitude,

then setting q to a constant is a good approximation for all but large oblique

angles of incidence. This constraint on the refractive index ensures the wave in

the half space travels normal to the interface for all incident angles. The value

for the surface impedance in Eq (2.6) can also be used for a curved boundary

provided

Im( 0--) IkoP, Pi1 (2.7)

where pi are the principal radii of curvature associated with the surface. The

condition in Eq (2.7) ensures the material is sufficiently lossy so that the fields

penetrating the surface do not reemerge at some other point on the surface.

For a perfectly conducting body, i7 = 0, and the I.B.C. satisfies the general

boundary conditions.

The IBC for the half space is the IBC which can be used for the analysis of
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the scattering from an impedance wedge. Using the half space IBC, the

impedance wedge is simulated by a thin impedance surface having the same

wedge angle as the original impedance wedge. The surface impedance of the

wedge is approximated to be the surface impedance in Eq (2.6).

Thin Impedance Half Plane (5). Senior has applied the Impedance

Boundary Condition to a thin impedance half plane. A thin impedance half plane

is a half plane with arbitrary permeability, arbitrary permittivity, thickness less

than the wavelength of the incident field, and thickness greater than the skin

depth of the material. The constraint requiring the thickness be less than the

wavelength ensures that there are no normal polarization currents in the half

plane; only tangential currents exist. The other constraint requiring the thickness

be greater than the skin depth ensures no fields reemerge from the half plane.

The method of applying the IBC to the half plane is to replace the half

plane with an equivalent impenetrable impedance sheet having a surface

impedance of q and a magnetic current and an electric current on the surface.

Senior has shown that both the electric and magnetic tangential fields on the

impedance sheet are discontinuous across the impedance sheet by an electric

current and a magnetic current, respectively. In addition, Senior has shown that

the IBC becomes

n X [n X (E. E_)] -Z, n X (H - H-)

1 (2.8)

liz.
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where

n = the outward unit normal vector on the sheet

E. electric field on top of the sheet

E = electric field on the bottom of the sheet

H = magnetic field on the top of the sheet

H.= magnetic field on the bottom of the sheet

Zo = the impedance of the surrounding media

The first IBC in Eq (2.8) is derived directly from Eq (2.5) whereas the second

IBC in Eq (2.8) is derived from Eq (2.5) using duality. Using the general

boundary conditions, the electric current, J. and magnetic current, Jm, on the

impedance sheet are

J0  X (2.9)

.=-n X (E. - E_)

A special case of the thin impedance half plane is a pure dielectric half

plane where the relative permeability of the material is unity. For this case the

impedance material only supports an electric current and the sheet is called

"resistive." The IBC for the "resistive" sheet is

n X (E -) 0 (2.10)
n X (n X E) =-RJ,(

where
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E,= the electric field on the top of the sheet

E = the electric field on the bottom of the sheet

n = the outward normal on the sheet

E = the total electric field on the top of the sheet

Je -the electric current on the sheet

R e = the resistance of the sheet

Another special case of a thin impedance sheet is a pure ferrite sheet

which has a relative permittivity of unity. For this special case, the impedance

sheet only supports a magnetic current: this type of sheet is called

"conductive." The IBC for a "conductive" sheet is

n X (H. - H_) =0 (2.11)
n X (n X H)=-RJ(

where

H = the magnetic field on the top of the sheet

H = the magnetic field on the bottom of the sheet

H = the total magnetic field on top of the sheet

Rm = the conductance of the sheet

Senior has shown that the two current sheets that exist on a thin

impedance sheet are uncoupled. Therefore, a thin impedance half plane can be

modelled as the superposition of a partially transparent "resistive" sheet obeying

the IBC in Eq (2.10) and a partially transparent "conductive" sheet obeying the

IBC in Eq (2.11). Therefore, combining the "resistive" sheet and "conductive"
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sheet IBCs, the IBC for the impedance sheet is

n X [n X (E+ + E)] = -2ZoR, 'a X (H - H_) (2.12)

n X [n X (H+ + H_] = 2YoR. a X (E. - E_)

The resistance and conductance of the two sheets are related to the surface

impedance of the total impedance sheet by R. = j7/2 and Rm = 1/2j/,

respectively, If the values of R, and Rm are substituted into Eq (2.12), the IBC

reduces to the original impedance sheet IBC in Eq (2.8). The relationship

between R. and Rm is 4*Re*Rm = 1 which is called the opaque condition.

Another concern is the value of R. and Rm in terms of the material

properties of the impedance sheet. These values can be found by using the

volume equivalence theorem from basic electromagnetic theory. The layer will be

assumed to lie in the x-z plane.

An impedance layer with a relative permeability of one is a pure dielectric

layer which will only support an electric current. Using the volume equivalence

theorem, the layer can be replaced by the equivalent directional currents, Jq.

Jx =jkoYo(,r - 1)Ex

Jy =jko Y°(e, - )E, (2.13)

Jzo = jkoYO(e, - 1)Ez

where

k. = the wavenumber of free space
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E = the electric field inside the layer

Yo = the admittance of free space

The sheet is considered to be thin so Jy can be neglected and the current densities

J, can be replaced by the sheet currents, J,,(,)

J , = ".J J =z Jz. (2.14)

Using Eqn (2.13) in (2.14), the following equations are derived

E. = ZR J,, E, =ZR J,, (2.15)

where

-J (2.16)
=k(r - 1)

and

Re= resistance of the sheet

E, = the tangential electric fields on the sheet

Zo = the free space impedance

ko = the free space wave number

r = the layer thickness

Er = relative permittivity of the layer

The same analysis can be used for an impedance sheet having a relative

permittivity of unity. This is the case of a perfect ferrite. Using duality, the sheet
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would have a conductance, Rm, of

-J (2.17)= ko~tt , - 1)

where

Pr = the relative permeability of the layer.
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HI. Theo

This chapter presents the development of the diffracted fields for

impedance strips, impedance double wedges, and multiple impedance double

wedges (convex polygons). The single, double, and triple diffractions for the

impedance strip and impedance double wedge are presented, but for the multiple

impedance double wedge there is another diffraction considered. This other

diffraction is a three vertex triple diffraction.

Before the diffracted fields can be presented for a strip, the diffracted field

from a half plane must be derived. The multiple diffracted fields can be derived

on a strip using the Extended Spectral Ray Method (ESRM) and the diffracted

field from an impedance half plane. Likewise, the diffracted field from an

impedance wedge must be derived before the multiple diffractions on a double

wedge can be derived.

The impedance boundary condition for the impedance half plane is used to

derive the diffracted fields for the strip and the half space impedance boundary

condition is used in the analysis of the impedance wedge. Both of these boundary

conditions are presented in Chapter 2.

Finally, the time convention assumed in this thesis is exp(jct) and all

impedances are assumed to have a positive real part such that all impedance

materials are passive.
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Impedance Half Plane(5:7-35)

As discussed in Chapter 2, an impedance half plane can be analyzed as the

sum of a "resistive" half plane and a "conductive" half plane. The "resistive" half

plane produces the fields from the electric current on the half plane and the

"conductive" half plane produces the fields from the magnetic current on the half

plane. Senior (19) has shown that for the case of the impedance half plane the

magnetic currents and electric currents are uncoupled.

For an E-polarized plane wave normally incident on the impedance half

plane shown in figure 3.1, Senior (19) derived an integral representation for the

scattered field as

1= f 1 [I :11( +cosa)(1 + cos)
2 z cosa +co s4o (3.1)

K.(a) K (4 )ell*** --O)da ; yO>.O

where the contour of integration is shown in figure 3.2, p is the observation angle,

0o is the incident angle, ? is the normalized impedance, and K+(a) is the split

function, defined by
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K.(a) = 2 3 sin(!){ 2 2
2 2 92

2) (3.2)

I11[ +VF2Cs(, 2 )][1 +V-cos( 2 ")l

and

1 -0.0139Z2  Im(z)!42
Ts(z)i 1.05302 cos[ -(z -jln2)] exp[i ZeJ Im(z) "4.2 (3.3)

4(3

provided Re(z) < a/2; otherwise, the following identities must be used as many

times as needed until the argument is in the form useable by Eq (3.3).

coes(4 --8) (3.4)
T '(Z)4 8

T'.(-z) = Y,(z), (3.5)

T,(z*) = T on(z), (3.6)

where the asterisk denotes the complex conjugate.
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PI

Figure 3.1. Geometry for an impedance half plane.

I C

a plaw

Figure 3.2. Contour of integration for determination of the scattered field from

an impedance half plane.
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This is a highly accurate approximation for the Maliuzhinets function, 'i'(z), and

was developed by Volakis and Senior (27). The variable 0 above is related to the

normalized surface impedance. For E-polarization, sin 0 = 1/)I, whereas for H-

polarization sin 0 = j7.

Herman (5) performs an asymptotic non-uniform evaluation of the integral

in Eq (3.1) using a technique developed by Volakis and Herman (7). Since one is

concerned with plane wave incidence and far field observation, a non-uniform

solution is sufficient. The non-uniform evaluation of Eq (3.1) gives

2c kop c +cos46 (3.7)

*11 Ti (I +cos4o)(1 +cos4,)} *gK ( ) ( )ei"; y>0

where r is a phase factor to be used when the diffracted field is applied to an

impedance strip. In this evaluation, the normalized surface impedance is assumed

to be constant for all incident angles.

In Eq (3.8), the terms multiplied by ?I are associated with the "conductive"

half plane while the rest of the terms are associated with the "resistive" half plane.

Impedance Si

Herman (5:33-88) develops the single, double, and triple diffraction

mechanisms on a resistive strip which rigorously accounts for the surface wave

interactions. Since the electric and magnetic currents on an impedance strip are

uncoupled, Herman solves for the resistive strip which is an easier formulation
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and then uses the resistive diffractions to solve for the conductive strip

diffractions. Once both the conductive strip and resistive strip diffractions are

known, the impedance strip diffractions are found by the summation of the

conductive and resistive diffractions. The Extended Spectral Ray Method

(ESRM) is used to derive the double and triple diffractions on the resistive strip.

The traditional method to solve for double and triple diffractions is to repeatedly

employ a uniform diffraction coefficient with the incident field being the

diffracted field from a previous edge. This method requires all incident fields be

ray-optical which is not satisfied when the argument of the transition function in

the diffracted field is small. The ESRM is used to eliminate the problem.

The ESRM is a generalization of the Spectral Theory of Diffraction (STD)

(5:29). The STD states a field can be represented as an integral or summation of

spectral plane waves. Tiberio (23) has shown that a field diffracted by an edge

can be interpreted as an infinite sum of inhomogeneous plane waves, each of

which has a ray representation. The application of the ESRM to double

diffractions is to write the incident field on a second edge as an integral of

inhomogeneous plane waves, then multiply the integrand by the known plane

wave diffraction coefficient after its analytic continuation in the complex plane.

Single Diffraction on Resistive &$.j.. Consider the strip shown in figure

3.3. The scattered field in Eq (3.7) can be used to find the single diffracted field

at edge Q, or edge Q2, where r is a phase factor. If Q, is taken as the phase

reference in figure 3.3, the phase factor is zero for the singularly diffracted field at

Q, and is -w(cos q.o + cos 0) for the singularly diffracted field at Q2. Herman (5)
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Qi

Figure 3.3. Geometry for an impedance strip.

considers the resistive strip component of Eq (3.7) to solve for the double and

triple diffracted fields for a resistive strip.

Double Diffraction on Resistive 51_tp. The double diffracted field results

when the incident field diffracts from Q, or Q2 and then is diffracted again at Q2

or Q1, respectively. There are four possible mechanisms for the double

diffraction. Two travel on the top of the strip and two travel on the bottom of the

strip. The four mechanisms are graphically shown in figure 3.4.

The exact integral representation of the field incident at Q2 after

diffraction at Q1 is

sin-El= 2 KcgK(0)-**6 a(3.8)

where
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K4.(*a)
K~c(a) -(3.9)

sin(±-)
2

Herman (5:37) states that Eq (3.8) is a complex plane wave diffracting from 01 at

an angle a. Then using the ESRM, the field is a plane wave incident on Q2 at an

angle of -a. Eq (3.9) can be evaluated non-uniformly as

sin( , )
E2 : 3k iei op _, 2 K(-a)Kr (4

2) (3.10)
2R kp e Cosa +Cos 42

where the angle p2 is measured from the strip at Q2.

Keeping with the ESRM, the integrand of Eq (3.8) can be multiplied by Eq (3.10)

to yield the double diffracted field from edge Q1 to edge Q2. Applying the ESRM

yields the double diffracted field to be

-4i-e 4 e jkpf2

,a2~ L~+co6 [CO~a +coS02J (3.11)

*K(4)K+(02)e-ft'' da

This integral can be evaluated asymptotically using the Method of Steepest

Descents. Upon integration of Eq (3.11), the final double diffracted field is
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Figure 3.4. Double diffraction ray mechanisms on an impedance strip.
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d-1024 =K+(4%k(49~)K(O)a3eJ"'e*jP Fl (3.12),ipw (.2

•[A I1- Fp(kwa)} +B (1 -F F.(bwa)} +C(1 - Fv(kUW)a

where

a, = 2cos2(-) (3.13)
2

a2 =2cos2(±2) (3.14)
2

43 =2eos2(!) (3.15)
2

A =- 1 (3.16)
(a2 -a,)(a3 -a,)

B=- 1 (3.17)(qa - a2) -

C=- 1. . (3.18)
(a, -a)(q2-a)

and

Fxp(z2) = ±2jzF c(*z) (3.19)

which is the Kouyoumjian and Pathak (11) UTD transition function in terms of
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the Clemmow transition function

Fc( ±z) =el f e 2 dr (3.20)

which satisfies the identity

Fc(-z) = /i e 4 e - F(z) (3.21)

essential for maintaining total field continuity. In Eq (3.20), the minus sign is

chosen when the argument of z is greater than x/4 and less than 5x/4, otherwise

the positive sign is used.
Tr Diffraction o Resistive ._i . Now the triple diffractions on the

strip are presented. There are eight different triple diffractions on a strip. Four

propagate from Q1 to 02 and back to Q1. Another four are from Q2 to Q1 and

back to 02. All sets of four triple diffractions are of equal strength. Graphically,

these eight diffractions are shown in figure 3.5.

Herman (5:40-43) uses the double diffracted field and the ESRM to derive

the tr'ple diffractions. The triple diffracted field is given by

3.11



-
0

',n -0

Figure 3.5. Triple diffraction ray mechanisms on an impedance strip.
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d,,,.. = 2 3-
3 , - X.(O)a3K.(,O)K.(O)

16(kn)Ww

1 {1-F ,(kwa)I+ 1 f1- F,,(kwa)i
(2-a 1)(a-a) KP(a 1 -2)(a 3 -2) (3.22)

1
+ 1 (I - Fx,(kwa) e

(a, - (2-a

(a a) xFu) _F,,,(k.4) e-

where

a4 =2cos2(_l) (3.23)
2

Conductive and Impedance &nS_. Herman (5:44-46) derives the double

and triple diffractions of the conductive and impedance strips from the resistive

strip's double and triple diffractions, respectively.

The double diffracted fields for the conductive strip and impedance strip

are

2 2 (3.24)

rg,._ ='.wa.(02,40o) + 4(021,00)

where Ed21(, 0o) is given in Eq (3.12).
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Likewise, the triple diffracted fields for the conductive strip and impedance

strip are

2 (3.25)

d d dE 1216nwo = E1 1 () + E12 1 400)

where E 1 2,(,9) is given in Eq (3.22).

Impedance dge

Maliuzhinets (12) derived the integral representation of the diffracted field

for a solid isolated wedge, shown in figure 3.6, when illuminated by a plane wave

Ez =k(co , ..yi#.) (3.26)

When the illuminating plane wave is E., the incident wave is called E-polarization

(horizontal polarization). The other case, when the illuminating plane wave is H.,

is called H-polarization (vertical polarization). This integral representation is

-sin(-o)
cos(-) -cos() (3.27)

n n (3.27)

3.14



Yx

(2-n)4

on' fac

Figure 3.6. Geometry for an impedance wedge.

h(a)

Figure 3.7. Steepest descent path used in the impedance wedge formulation from
the Sommerfield contour in the complex plane.

where C is the Sommerfeld contour shown is figure 3.7, 2(b is the external wedge

angle ((D = n/2), 4 is the observation angle, 0o is the incident angle, and U4

represents either E. or H,. The function, T(a), is called the Maliuzhinets

meromorphic function and is defined as
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F(a) = T*(a + o +x -0) ) Yo( a -0 - - + 0-) vo(a) (3.28)
2 2

where T. is given by

To = ,(a + 0 - + 0) 70(a - - -0e-) (3.29)
2 2

and

0=/sin-'(1) E-Pol. (3.30)

{sin-n1) H-Pol.

where Y is the equivalent surface impedance of the material normalized to free

space impedance, 377 Q. The plus and minus superscripts on 0 corresponds to

the "o" face and "n" face of the wedge, respectively.

The function Y, is defined by Maliuzhinets (12) as

',(z) =exp[ f f tan(.-' dd (3.31)
0. 40 cov-u)

Until recently, the evaluation of the integral in Eq (3.31) has not been possible

for an arbitrary wedge angle. Volakis and Senior (27) have derived accurate

approximations for the integral in Eq (3.31). For small arguments of z,
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',(z) - 1 _ 2( (332)

where 6 = 0.04626 + 0.0544D - 0.0078V) and for large arguments,

COS(-.1)e " (3.33)Y*(z) co-.)

where y = 2.556343(D - 3.259678V 2 + 1.659306VIP - 0.388354804 + 0.03473964<V5.

When the imaginary part of z is greater than 4 for the large argument form, or

less than 4 for the small argument form, these approximations provide less than

two percent error (4:92). The approximations will give 0.5 percent error provided

the argument in Eq (3.33) has an imaginary part greater than 10. For arguments

with imaginary parts less than 10 and for 0.5 percent error, a five point numerical

integration is required

F,(z) = exp[-1(u +jv)] (3.34)
2

where

5 cs

u=0.3E [[x~cos[y]-1 (3.35)
.1 cosh[ ] sinh[20 tj

2

3.17



Sv=0. . sinh[t x]sin[9 y]-l.I
v=.3i m(3.36)

I cosh[-a] sinh[20 t]

and z = x + jy, = 0.3n - 0.15.

To simplify the analysis, the Sommerfeld contour shown in figure 3.7 can

be deformed so that Eq (3.27) can be recast as

sin(-
-,2(nf y(jn e-Jkpco

n (-) 
(3.37)

'(a +x + -4) - Y(a -n + -4) da

COS(a +'R-cos(±) Cos("- -,)-cos(6°)
n n n n1

Herman (5) states the first order asymptotic evaluation of Eq (3.37)

corresponds to the diffracted field from an isolated wedge whose non-uniform

solution is

2z e i sin(-)

2nn FkP (LI - .)
2 (3.38)

+7 n n

2 2

cos( 7, - cos(±,-4) Cos(-) - Cos()
n n n n3
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In this evaluation, the normalized equivalent surface impedance is assumed to be

constant for all incident angles. Eq (3.38) will be used as the singularly diffracted

field from an impedance double wedge at the phase reference. For other edges

on a double wedge, Eq (3.38) can be used provided a phase term exp(-jkr) is

included where r is the appropriate phase factor.

Ipedance Double Wege

The geometry of an impedance double wedge is shown in figure 3.8. The

single diffractions at Q, and Q2 and the double diffractions and triple diffractions

on the common wedge will be presented. Throughout the analysis Q1 is taken as

the phase reference, and all local angles are measured with respect to the

common, "o", wedge face. The normalized equivalent surface impedances of the 3

wedge sections will be denoted 10, i71, and 2 for the common wedge face, outer

wedge face at Q1, and the outer wedge face at Q3, respectively.
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Figure 3.8. Geometry for an impedance double wedge.

Single Diffractions. The primary diffractions at Q1 and Q2 are given in Eq

(3.38) where the appropriate phase factor for Q1 is zero and for Q 2 is -w(cos q +

cos 0o).

Double Diffractions. The geometry for the double diffraction from Q1 to

Q2 is shown in figure 3.9. The ESRM will be used to derive the double

diffraction as in the derivation of the double diffractions for the resistive strips.

Upon applying the ESRM, the integral for the double diffraction from Q1 to Q2 is
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Figure 3.9. Double diffraction ray mechanism from 01 to Q on an impedance

double wedge.
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2 2

*fe jkw"si(Isi(IIFot+-nt+,),(_, +-!%+nr)
Js(o 'n''m 2 2

7g ~ ~ o +0 '*)-cog-!) cor,(-)-cog-) (3.39)

Cos( )COSg) COS( *02) _Wog )m m m m

sin(±2)C,( - a)
+m

co- - -- aI
m m

where

O.25sin(c ") -sin(c -) -2sin(2-. )cos( a ) +sin(I *) +sin(- I
C,/a) = + 1+9 (3.40)

sin(' 7 )sin(-~o)cos(azo )Cos(g +)
21 21 21 21

and

i- * (3.41)

79= -~0* (3.42)
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and 1 is the appropriate wedge angle integer, n or M. Eq (3.39) can be integrated

uniformly to find the doubly diffracted field from Q, to Q2. Upon integration

using the modified Pauli-Clenimow approach, the diffracted field becomes

2 2
*a~a2a3[Af 11 -F,,(kwa1)I +B{ 1 -Fp,(kwa2)J +C{ 1-F,.~,(kwa )

1 1 Sin(±)C"~(O)
I _ n __

1 -COS(w 0) 1 -COS(7+-I*) COS(-!) -COS()
n n n n

-o-)Sin(±2 C.(O) e-A

cos(-cos(- (3.43)

where

a, = 2coi 2(+0 (3.44)
2

a2 = 2CS24±2) (3.45)
2

a3 =2sbjL2(O) (0 of common face) (3.46)
2

A = -a)a 1 ) (3.47)
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B=- 1 (3.48)
(a, -a2)(a3 -a2)

C = 1 (3.49)

(a1 - a)(a2 -a )

and r = -w cos(o). A factor of one half was included to account for grazing on

the common wedge face. Also, the integration accounts for the presence of the

geometrical optics poles and the surface wave poles.

The above equations can be used for the reciprocal double diffraction from

Q2 to Q1 by substituting r --* -w cos(o), 0. -" a - qo, k2 -" x - 02, m -- n, and n --

m in Eq (3.43).

Triple Diffractions. The geometry for the triple diffraction at Q1 is shown

in figure 3.10. Once again using the ESRM, the integral representation for the

triple diffracted field from Q1 to Q2 and back to Q1 is

V1(a +- n

d Jr jkwozu.~i(_) d (a'41 2
2 n J s(o) e n T(!! '- 0) ( .0

42 (3.50)sin(-- )c,.(C)
co( 1 1 sn)~ c

cos(____)__eos___) cos(O-!A)_cos(±) Cos( U -a )-os(4)

n n n n nl n

where u21d(a,q.o) is the double diffracted field from Q, to Q2.

After the integration of Eq (3.50) using the modified Pauli-Clemmow
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QQ2\

Figure 3.10. Triple diffraction ray mechanism on an impedance double wedge at
Q1.

method of steepest descents, while accounting for the geometrical optics and

surface wave poles, the triple diffracted field is then
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j _ y 2( 27 +,y(2 +,X)

d -jkwe' 4' e AP 2 2
2(A=)'%(nrm)n ffn_2 2', 2~~-  4't--

ax a3a" [AlF -F a1 )I +B(1-Fkwa2)I+C1l-Ftkwa)]
(q3 - -)

*[F,,(kwa3) -F,,(kwa4)J e -~r

4

n_} (3.51)

1-cos( 0) 1 -cos( 0) cos(-) -cos(-)n n n n
si(-)co.(o)

I I n

1-Cos(-) 1-cos( ) cos(-)-cos(A)

-2sin(-),1M m -C-(O))

[1 -COS(--)] 2 1 -COS(n)
m m

where

a4 =2cosW(.A) (3.52)
2

and a one fourth factor was included to account for grazing on the common

wedge face. Also, the phase factor is zero.

If the triple diffraction starting at Q2 going to Q, and back to Q2 is desired,

Eq (3.51) is still correct providing the transformations 0o -- o - 0o, 0 -3 a - 0, m

n, and n - m are used. Now, the phase factor would be r = -w(coso + cos4o).
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Convex Cylndrical Polygon

The combination of many impedance double wedges can be used to

construct a convex impedance cylindrical polygon. A section of this polygon is

illustrated in figure 3.11. If all the parameters are applied to the local geometry

of each double wedge in the polygon, the previously presented diffraction fields

for single, double, and triple diffractions can be used. For the polygon, one can

envision an additional diffraction as shown in figure 3.11.

Qn+2

Figure 3.11. Three vertex triple diffraction ray mechanism on an impedance
polygon.

Herman (5) has derived such a diffraction. The three vertex triple diffraction is

described by an incident wave on Q. generating spectral waves diffracting at an

angle -a and propagating toward Q.+1 . This ray incident at Q.+1 then diffracts at
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a local angle a. The diffracted field is the double diffraction field already

derived. The diffracted ray then can travel to Q.+2 and diffract toward the

observer. The diffraction will be called a three vertex triple diffraction.

The diffracted field has the integral representation

y(a +P7 +C
d dJw=Sn 2

2 (3.53)

1 1 sin()C,()
Cos(! 4)-cos(-¢ ) COS(" 4 ) - cos( -") Cos( -) -Cos()

P P P P P P

where p7r is the external wedge angle at Q.+2 and n7r and mn~ are the external

wedge angles at vertices O. and Q,+, respectively. Also, u21 (a, 10.) is the double

diffraction field in Eq (3.43).

Eq (3.53) can be integrated uniformly using the modified Pauli-Clemmow

method of steepest descent while accounting for the presence of the surface wave

and geometrical optics poles. The result is
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-cos( -o) 1 -COS( o) Cos(-)-Cos()n n n n

l-Cos(-4o 1C-Co(!+4>) Co(-!)_-Cos(->)

n P p p

-2sin(--)

[I -cos( +M )j[lcos( 7 - m )] +cos(-)m m m

where

a. = 2sin2(_341) (3.55)
2

and 0 n+1 is associated with the common wedge between Q,+, and Qn+2" The

phase factor is r = -w'2 cos (5) - w' 1 cos (0o) where ., o, w' t , and w' 2 are shown

in figure 3.12.

Flat Impedance Structure

The convex impedance polygon can be made into a flat impedance
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V/'2

Figure 3.12. Geometry for the three vertex triple diffraction ray mechanism on an
impedance polygon.

structure by collapsing the interior angles to zero. This situation is an example of

a loaded strip or a tapered strip, i. e., flat impedance strips junctioned together.

The objective of this thesis is to analyze perfectly conducting strips with constant

loads. Therefore, the diffracted field derived by Herman (4) for convex

impedance polygons is applicable.

The single diffracted field, Eq (3.38), double diffracted field, Eq (3.43), and

triple diffracted field, Eq (3.51) for the impedance double wedge are applicable to

a strip if the local geometry of the structure is considered. The three vertex triple

diffracted field, Eq (3.54), is applicable, but the derivation assumed the structure

was convex, i.e, the external wedge angle integers (n, m, and p) were not equal to
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1. Inspecting Eq (3.54), one can see the following terms become unbounded

when m = 1

-2sin(O)
+ (3.56)

[I -coS(X +M7)][1 _cos(, -nx)] 1 +cos(-)m mN m

This occurs when the middle vertex of a three vertex triple diffraction has an

external wedge angle of ;r.

Since the flat structure is a special case of a polygon, this diffracted field is

applicable as the wedge approaches a flat junction. The diffracted field can be

used if the unbounded behavior is eliminated. This is done by taking a small

argument approximation and a limit on the cosine and sine terms in Eq (3.56).

Doing so changes Eq (3.56) to

7;

m + - C(O) (3.57)
2 -(_1)2 2-_1(1)2

m 2 m

Therefore, the three vertex triple diffracted field derived for the convex polygon

can be used directly for a flat structure if Eq (3.57) is substituted for Eq (3.56) in

Eq (3.54).

3.31



MV Sctern Predictions

This chapter contains the scattering predictions for impedance strips and

impedance-loaded strips. First, the diffraction sources on impedance strips and

impedance-loaded strips are discussed. Second, a discussion of the diffraction

sources included in the developed computer program is presented. Third,

scattering predictions for impedance strips and impedance-loaded strips with

several impedances are presented and compared to a perfectly conducting strip of

equal length.

Diffraction Sources

The diffracted fields developed in Chapter 3 are now applied to impedance

strips and impedance-loaded strips.

. The diffracted fields for the impedance strip developed in Chapter

3 can be applied to constant impedance strips with different impedances on the

top and bottom of the strip. There are two primary diffraction sources on a strip

and they are simply the two edges (external wedge angles of 2;r) on the strip.

There are many possible secondary diffractions that occur on a strip. For

example, there are double diffractions which arise after a single diffraction at an

edge travels down the strip to the other edge and diffracts toward the observer.

This diffraction occurs at both edges, and travels on the top and the bottom of the

strip. Other diffraction mechanisms which are possible on a strip are the triple,

fourth, fifth, and so on. In short, the diffraction order refers to the number of
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diffractions that occur on the strip before the energy scatters back to the observer.

Also, each of these possible diffractions occurs on the top and bottom of the strip.

The number of secondary diffraction mechanisms required to accurately model a

strip will depend on the length of the strip. As a secondary diffraction propagates

down the length of a strip, it attenuates. Obviously, an n' diffraction mechanism

will have n-1 attenuation paths. The length of a strip is an important factor in

determining the number of secondary diffractions required. More secondary

diffractions must be considered on a strip as the strip becomes shorter.

In this thesis, only the single, double, and triple diffractions are considered.

There are twelve diffractions considered in the analysis of the constant impedance

strip. There are two single diffractions: one at each edge. There are four double

diffractions. One set of two occurs on the top of the strip while the second set of

two exist on the bottom of the strip. Also, each set of two are of equal strength.

Finally, there are eight triple diffractions on the strip. A set of four triple

diffractions exist with two on the top of the strip and two on the bottom of the

strip. Another set of four triple diffractions exist where two begin on the bottom

of the strip and two begin on the top of the strip. Likewise, the two sets of triple

diffractions on the strip are of equal strength.

Loaded n1riM. A loaded impedance strip is basically a series of constant

impedance strips junctioned together. In this thesis, loaded impedance strips are

considered to be perfectly conducting strips with impedance loads attached on

each edge of the conductor. Therefore, each loaded strip will have two edges

(external wedge angles of 2m) and multiple junctions (external wedge angles of :r).
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In this configuration, the perfectly conducting strip can have constant impedance

loads or tapered loads. The tapered loads on the strip can be modelled as a

series of different impedance loads of different lengths and impedance values to

simulate the required taper.

The diffracted fields developed from the double wedge formulation in

Chapter 3 will be used for the analysis of impedance-loaded conducting strips.

The primary diffractions on a loaded strip occur at the edges and junctions on the

loaded strip. The secondary diffractions on the loaded strip are numerous. All of

the secondary diffractions mentioned for a strip will be present plus many other

secondary diffractions which bypass junctions and diffract on other junctions or

edges. These diffractions will be called by-junctional diffractions, since they

bypass junctions before diffracting back to the observer. Other secondary

diffractions are ones which diffract at a number of vertices before diffracting back

to the observer. These diffractions are called n-vertex secondary diffractions. An

example of a three-vertex secondary diffraction is shown in figure (3.11).

The formulation of the impedance double wedge assumes there are only

multiple diffractions on the top of the structure. For a loaded strip with two or

more junctions, there may be a triple diffraction on the bottom of an edge, but it

is neglected in this thesis. Also, there could be by-junctional diffractions, but their

presence and strength would depend on the number of impedance strip sections

on the loaded strip. The by-junctional diffractions will not be considered since

they are not derivable in the context of the double wedge formulation. Therefore,

in this thesis, the primary diffractions at edges and junctions will be considered,
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the double and triple secondary diffractions on a section of a strip will be

considered, and a three-vertex secondary diffraction will be considered. The last

secondary diffraction mechanism is considered because it is expected that non-

adjacent strips will have diffraction mechanisms between them. Herman (5)

originally developed the diffraction mechanisms for an impedance polygon. The

three-vertex secondary diffraction mechanism is a dominant diffraction on a

polygon (5).

Application of the Double Weg Diffraction Mechanisms.

Herman (4) has used the presented diffraction mechanisms in Chapter 3 to

predict the scattering from impedance strips and impedance polygons. His work

showed the diffraction mechanisms agreed extremely well with method of moment

predictions. Method of moments codes were not available for comparison in this

thesis. Therefore, the accuracy of the predictions can only be compared against

measurements.

A computer code for the analysis of multiply loaded impedance strips was

written in Fortran that takes into account all of the diffraction mechanisms

presented in Chapter 3 for an impedance double wedge and the three-vertex

secondary diffraction considered for impedance polygons. This code can be used

to model constant impedance strips or strips with multiple loads. It should be

noted that if the code is used for constant impedance strips, the multiple

diffractions on the bottom of the strip are not considered.

Herman (5) wrote a computer code to predict the scattering from
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impedance strips using the impedance half plane formulation in Chapter 3 and a

code to predict the scattering from impedance polygons using the impedance

wedge formulation in Chapter 3. The impedance strip program allows the

impedance strip to have different impedances on the top and bottom of the strip.

Because of the limitations of the double wedge formulation when applied to

constant impedance strips, Herman's (5) code is used to predict the scattering

from constant impedance strips.

Scattering Prediction Results

This section presents sample scattering predictions for impedance strips

and impedance-loaded conducting strips.

51rip. Several impedances are now investigated to determine the amount

of scattering an impedance strip exhibits compared to a perfectly conducting strip

of the same length. The impedances investigated were j3.0, -j3.0, 1.2, and 6.0.

These impedances were chosen such that a capacitive impedance, inductive

impedance, low non-reactive impedance, and high non-reactive impedance are

analyzed. Figures 4.1 through 4.4 show the predictions for 41 impedance strips

for the following impedance values and polarizations: j3.0 and -j3.0 for E-

polarization, j3.0 and -j3.0 for H-polarization, 1.2 and 6.0 for E-polarization, and

1.2 and 6.0 for H-polarization, respectively. Referencing figures 4.1 and 4.2, the

scattering level of the mainbeam for the impedances j3.0 and -j3.0 are the same

for both polarizations. These mainbeam levels are also the same for the perfectly

conducting strip. The differences in the patterns for the two impedances depend
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significantly on polarization. For E-polarization, the inductive impedance would

reduce the pattern for angles lower than 45 degrees and significantly reduce the

pattern at 0 degrees (edge-on). On the other hand, the inductive impedance

scattering prediction increases at 80 degrees and then violently oscillates with

broad sidelobes of 0 dB or better. For H-polarization, the impedances have the

opposite effect. Now, the capacitive impedance produces a more desirable

pattern. The capacitive material produces a reduction in RCS at 65 degrees, but

the edge-on RCS is significantly increased over the perfectly conducting strip at

edge-on. The inductive material produces a larger RCS beginning at the second

sidelobe and the edge-on RCS is even greater than the capacitive impedance. In

stimmary, each of the impedances behave drastically different depending on

polarization, which is an extremely undesirable characteristic when wanting to

reduce the scattering for arbitrary incident polarization.

Figures 4.3 and 4.4 show the scattering predictions for large and small real

impedances for both polarizations. The predictions show a reduction in RCS over

the perfectly conducting strip for both impedances and both polarizations.

However, the small impedance causes a drastic reduction in RCS. The large

impedance value provides some reduction, but not a significant amount. One

problem that occurs with both impedances for H-polarization is that the edge-on

RCS is significantly increased.

Loaded Perfectly Conductin 5tips. Figures 4.5 thru 4.8 are the scattering

predictions for both E- and H-polarizations for a 2). perfectly conducting strip

with LX impedance loads of j3.0, -j3.0, 1.2, and 6.0 attached on the edge of the 21
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strip.

For the capacitive and inductive loads, the RCS is greatly increased in the

sidelobes over a 4). perfectly conducting strip for both polarizations. A dominant

scattering characteristic for both impedances and polarizations is the forming of a

null at 90 degrees (broadside to the strip). However, higher sidelobe levels are

produced and a mainbeam is formed at 81 degrees. An interesting trend in the

predictions for E-polarization with capacitive and inductive impedances is the

capacitive impedances scatters more than the inductive impedance for angles less

than 55 degrees, but less for angles greater than 55 degrees. The reverse

characteristic occurs for H-polarization.

The scattering of a 4). perfectly conducting strip is not reduced by loading

the edges with 1). loads of either high or low purely real impedances. The higher

impedance load produces a null at 90 degrees and higher sidelobes for both

polarizations. The smaller impedance causes the mainbeam to lower by 7 dB, but

widens by 10 degrees. For E-polarization, both impedances show a reduction in

edge-on scattering. On the other hand, the scattering for both impedances is

increased for H-polarization.
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Y, Sctern Measurements

This chapter contains the procedures used to measure the impedance of

the materials, and the scattering from the impedance strips and impedance loaded

conducting strips, as well as a comparison between predictions and measurements

for several strip configurations. First, the procedure is presented to measure the

impedance of the four materials used. Second, the procedure used to measure

the scattering from the four configurations is presented. Third, an analysis of the

accuracy of the code developed is presented.

Impedance Materials

Four materials are used in the thesis. The four materials are Eccosorb SC

100, Eccosorb VF 10, Eccosorb SF 10, and Eccosorb FG 40. The Eccosorb SC

100 is a non-magnetic, 100 ohms per square resistivity, thin (thickness = 0.254

mm), lossy space cloth material made from carbon bonded to a fabric mesh.

Eccosorb VF 10 is a non-magnetic, 377 ohms per square resistivity, thin (thickness

= 0.254 mm) lossy space cloth material made from carbon in a plastic film. The

other two materials are magnetic-dielectric materials. The Eccosorb SF 10 is a

thin (thickness = 1 mm), flexible, narrowband, resonant absorber made from a

silicon rubber composition. The Eccosorb FG 40 is a thin (thickness = 1.11 mm),

hard, broadband absorber made from a silicon rubber.
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The SF 10 and FG 40 materials are magnetic radar absorbing materials.

In the context of this thesis, they would be impedance materials because their

permabilities and permittivities are other than free space and are usually complex.

The thickness of SF 10 and FG 40 compared to the wavelength of

measurement (0.0254 m) is 0.03937 and 0.0437, respectively. Therefore, SF 10

and FG 40 satisfy the constraint that the thickness be small with respect to

wavelength mentioned in Chapter 2. The requirement of the material being

highly absorbing or having a thickness greater than the skin depth will be

addressed later in this chapter. The normal attenuation for the frequency of

measurement, 11.8 GHz, was not provided in the specification for the two

materials. The SF 10 and FG 40 materials are applicable to the impedance

boundary conditions.

The SC 100 and VF 10 materials are resistive materials. A resistive

material has a permeability of free space and a complex or real pernittivity. In

addition, a resistive material has a permittivity with the real part not significantly

greater than the imaginary part or vice versa. The term R-card is used in the

literature for a thin resistive material having a permittivity with an imaginary part

significantly greater than the real part. This means the material has a high

conductivity, but is extremely thin. An example of an R-card is silver (metal)

sputtered on a kaptan substrate (approximately free space substrate).

Measurement.(8) The impedance of the materials were measured at 11.8

GHz using a waveguide precision load, EIP 575 Frequency Counter, 8350B Sweep

Oscillator, 8515A Test Set, and a HP 8510B Network Analyzer. The network
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analyzer is calibrated to the two waveguides by using a sliding short and a

waveguide termination procedure. Once the Network Analyzer is calibrated, the

impedance material is placed between the two waveguides. Now the relative

permittivity and relative permeability of the material can be calculated from Sn

and $21 values given by the network analyzer (8). S1 is a reflection coefficient

seen at Port 1, while S2, is a transmission coefficient seen at Port 2. Once the

permittivity and permeability of the material are known, the surface impedance of

the material can be approximated by using Eq (2.6).

Another way to model the surface impedance of the material is via the HP

8510 Smith Chart function which displays the impedance of the material

normalized to the wave impedance in the waveguide. The wave impedance in the

waveguide is the ratio of the transverse components of the electric and magnetic

fields in the waveguide at a specific operating frequency. In free space, the wave

impedance is equal to the intrinsic impedance, 120;r Q.

The waveguide had dimensions a = 22.86 mm and b = 10.16 mm and the

waveguide only supports the TE10 mode for the operating frequency 11.8 GHz.

The wave impedance in the waveguide is given by

= 120ix
Z-MX 1 2  (5.1)

and
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Sc ( 2 (2 2 (5.2)
fem 27t a b

where

c is the speed of light,

n and m are the mode numbers,

f is the operating frequency,

a is the long dimension of the waveguide,

b is the short dimension of the waveguide.

Using Eqs. (5.2) and (5.1), the cutoff frequency for the TE0 mode is 6.557 GHZ

and the wave impedance in the waveguide is 453.5 Q.

Heaton (4), using this method measured the impedance of the VF 10 and

SC 100 materials normalized to the waveguide as 0.267 + jO.099 and 0.397 +

jO.212, respectively. Therefore, the impedances of the VF 10 and SC 100

normalized to free space impedance are 0.3212 + jO.1191 and 0.4775 + jO.255,

respectively. The impedances of the other two materials, SF 10 and FG 40, were

measured as part of this effort.

When normalized to the free space impedance, the impedance of the SF 10

material is 0.2057 + jO.1816 and the impedance of the FGM 40 material is 0.2201

+ jO.1720.
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_ctt ¢, onfiguration

Four configurations were measured: constant impedance strips, constant

impedance strips with a perfectly conducting backing, impedance loaded perfectly

conducting strips, and impedance loaded perfectly conducting strips with a

pertectly conducting backing. All constant impedance strips were 41 by 61. The

loaded strips were made of 21. by 6. conducting strips loaded with 11 by 6X

impedance strips on each side of the conducting strip.

The impedance strip with a perfectly conducting backing was chosen as a

configuration to determine the accuracy of the impedance strip formulation when

the impedance is different on the top and bottom of the strip. Likewise, the

impedance loaded strip with a perfectly conducting backing was chosen as a

configuration to determine the accuracy of the double wedge formulation when

applied to impedance polygons. The impedance loaded strip with a perfectly

conducting backing can be modelled as a triangle with one side being an

impedance loaded strip and the two other sides being perfect conductors. If the

angles between the loaded strip side and perfectly conducting sides are zero then

the configuration is an impedance loaded strip with a perfectly conducting

backing.

Tat Construction. The loaded impedance strips were constructed by

sandwiching the impedance material (6 inches by 4 inches) between two perfectly

conducting strips (6 inches by 2 inches) and then the conducting strips were taped

together. The tape used was a special tape which is made to have a low radar

cross section. This tape is called flash breaker tape. The loaded strips with a
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perfectly conducting backing were constructed by placing the impedance material

(6 inches by 4 inches) on top of a perfectly conducting plate (6 inches by 4 inches)

then another perfectly conducting plate (6 inches by 2 inches) was place on top of

the impedance material. The smaller conducting plate was taped to the larger

conducting plate using the flash breaker tape. The only other configuration which

needed construction was the impedance strip with a conducting backing. This

configuration was constructed by taping the impedance material (6 inches by 4

inches) on top of a conducting plate (6 inches by 4 inches).

All of the configurations were placed inside a styrofoam frustrum for

measurerent. The styrofoam frustrum was split in half so that the strips could be

taken in and out easily. The two halves were taped together with the flash

breaker tape during measurements. The frustrum also kept the strips vertical so

that the strips did not lean forward or backward as they rotated during the

measurement. Scattering from the frustrum was low because most of the energy

was reflected upward away from the receiver. In addition, the backscatter that

did exist from the frustrum was constant for all incident angles. Thus, the

frustrum mounting technique provided symmetric scattering patterns for the

impedance strip and impedance-loaded strip measurements.

Measurements. All measurements were taken at the AFIT School of

Engineering's anechoic chamber. The chamber is a 6 to 18 GHz monostatic far

field measurement facility. All of the measurements in this thesis were taken at

11.8 GHz such that the wavelength is 1 inch. Therefore, all the strips measured
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were 6). by 41. The plane of measurement is across the width of the strip, 4

inches.

For the predictions, the strips are considered two dimensional. fhe third

dimension in the measurements is 6 inches.

The measurements from the anechoic chamber are in dBsm, decibels per

square meter (3 dimensional) and the predictions are made in dB/)., decibels per

wavelength (2 dimensional), a conversion is required to compare the two sets of

scattering data. The dB per wavelength prediction data is converted to dBsm by

using the conversions

212 (5.3)
-3D y 2D

and

(dB) = o0,(d~sm) - 10log(X) (5.4)

where 1 is the length (third dimension) of the target and I is the wavelength of

the incident energy. The wavelength is 1 inch and the length of the strips is 6

inches. Using the above conversion formulas, -13.33 dB must be added to the

prediction data to convert it to decibel per square meter, dBsm.
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Predictions vs Measurements

As a reminder, the impedance strip predictions (with and without a

conductor backing) are made using the impedance half plane formulation, the

loaded strip predictions are made using the impedance wedge formulation with

the revised three-vertex triple diffraction, and the loaded strip with conductor

backing predictions are made using the impedance wedge formulation with the

three-vertex triple diffraction.

The impedances for the materials used in all predictions are the

impedances measured using the waveguide technique. The measured impedances

for the SC 100, VF 10, SF 10, and FG 40 are 0.4775+jO.255, 0.3212+j0.1191,

0.2057+jO.1816, and 0.2201+j0.1720, respectively. The impedance of a perfect

conductor is modelled as 0.0+j0.0.

The prediction program used for the impedance strips allows the

impedances on the top and bottom of the strip be different. Therefore, for

constant impedance strips the same impedance is assumed to be on the top and

bottom of the strip. For constant impedance strips with a perfectly conducting

backing, the top impedance is assumed to be the measured impedance of the

material while the bottom is a perfectly conductor impedance (0.0+jO.O).

The prediction program used for the impedance loaded strip does not

consider the top and bottom of the strip to have different impedances. For the

prediction of the impedance loaded strip with a perfectly conducting backing, the

strip must be modeled as an impedance polygon. The loaded strip with a

conductor backing is modelled by a triangle with sides of length 41, 2.0000251,
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and 2.0000251. The 4. side is the loaded strip while the other two sides are

perfectly conducting.

For the impedance strip predictions and measurements, the materials

considered are SF 10 and FG 40. On the other hand, for the impedance loaded

strip predictions and measurements, the materials considered are SC 100, VF 10,

SF 10, and FG 40.

The impedance half plane formulation uses the impedance half plane IBC

developed by Senior which considers an impedance half plane as the

superposition of a resistive half plane and a conductive half plane. The

impedance wedge formulation uses the half space IBC which does not make any

distinction between resistive wedges and conductive wedges. Both formulations

use the same assumptions for the equivalent surface impedance. During this

thesis, it was found that the impedance wedge formulation gave excellent results

compared to measurements of conducting strips loaded with SC 100 and VF 10

(figures 5.9 through 5.12). These materials are not impedance materials. They

are resistive materials. Measurements and predictions were also made using the

impedance half plane formulation for impedance strips with the materials SC 100

and VF 10. The predictions compared to measurements were low by 5 dBsm or

more, but the lobe placement and number was the same. These comparisons are

not presented.

The fact that the impedance wedge formulation gave excellent results for

resistive materials and the impedance half plane formulation did not is not

understood.
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Impedance nr.pZ. Figures 5.1 and 5.2 are the plots of the predictions and

measurements for a 41 (4 inches by 6 inches) perfectly conducting strip (flat

plate) for E- and H-polarizations, respectively.

There are three formulas which can be used to confirm the predictions and

measurements for a perfectly conducting strip (plate). One formula is the

traveling wave lobe equation for H-polarization. For H-polarization, a traveling

wave exists on a perfectly conducting strip. This traveling wave on the strip

produces a lobe in the scattering pattern. The formula which provides the

location of the traveling wave lobe is

0 =(5.5)

where

1 is width of the strip,

) is the wavelength of the incident wave,

0 is the observation angle measured from edge-on.

The second formula is for the prediction of the scattering at edge-on with the

polarization parallel to the edge (E-polarization). The formula is

12 (5.6)
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where 1 is the length of the edge (6 inches for the plate). The third formula for

the broadside scattering from a flat plate is

a =4A (5.7)
A2

where A is the area (6 inches by 4 inches) of the perfectly conducting plate and .

is the wavelength (1 inch) of the incident wave. This formula is polarization

independent.

Using the traveling wave lobe formula, a traveling wave lobe should exist

at 24.68 degrees from edge-on. Inspecting figure 5.2, the traveling wave lobe does

exist in the measurements and predictions. Using Eq (5.6), the scattering at edge-

on for E-polarization should be -21.31 dBsm. From figure 5.1, the scattering for

the measurement at edge-on is -22 dBsm and for the prediction at edge-on is -21.5

dBsm. The edge-on scattering formula has better agreement with the prediction

than the measurement. Using Eq (5.7), the broadside scattering for the strip

(plate) should be 6.693 dBsm. In figure 5.1, the broadside scattering for the

measurement is about 5.5 dBsm and for the predictions is about 6.5 dBsm. In

figure 5.2, the broadside scattering for the measurement and for the prediction is

about 6.5 dBsm. In general, the formulas agree better with the prediction than

the measurement of the perfectly conducting plate. One characteristic of the

measurements for both E- and H-polarization compared against the predictions is

the sidelobes are shifted backward toward edge-on for E-polarization and shifted

forward toward broadside for H-polarization. This shifted feature would mean
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the plate was tilted backward for the E-polarization measurement and forward for

the H-polarization measurement. A tilt of the plate during measurement would

also give a lower broadside scattering.

Figures 5.3 to 5.8 show the measurements against predictions for the

constant impedance strips with and without perfectly conducting backing for both

E- and H- polarizations. The impedance materials considered are the SF 10 and

FG 40. The impedance strips are 41 in width and 61 in length (4 inches by 6

inches impedance plate).

Figures 5.3 through 5.5 are the predictions against the measurements when

the impedance material is SF 10 for an impedance strip with E-polarization,

impedance strip with conducting backing for E-polarization, and impedance strip

with H-polarization, respectively. Figure 5.3 exhibits the same shift in lobe

placement as seen for the perfect conductor measurements. The mainbeam of the

predictions is about 2 dBsm below the measurement. Since the prediction is low

the difference in the mainbeam can not be explained by a possible tilt in the strip

during measurement. The only way to explain a low prediction is by the surface

impedance of the material used in the prediction being incorrect. At edge-on, the

difference in the two patterns although small can be due to the impedance used in

the prediction is for normal incidence. As mentioned in Chapter 2, the surface

impedance is really a function of incident angle which the formulation does not

consider: the surface impedance is assumed constant for all angles of incidence.

In figure 5.4, the prediction is 2 to 3 dBsm greater than the measurement.

The difference in this plot must be due purely to the modelling of the surface
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Figure 5.1. Comparison of measured and predicted monostatic scattering pattern
for a 4 inches by 6 inches perfectly conducting strip at 11.8 GHz, E-polarization.
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impedance. The strip is made of a magnetic absorbing material (SF 10) on top of

a perfect conductor. The measurement shows the amount of absorption changing

with incident angle. The measurement shows the absorption changing with

incident angle, but at edge-on the scattering level is the same as the perfectly

conducting strip measurement (figure 5.1). If the surface impedance was modelled

correctly as a function of incident angle, the prediction would be expected to show

a better agreement with the measurement.

Comparing figures 5.1 and 5.4, the amount of absorption at normal

incidence provided by the SF 10 material is 2.52 dBsm. Remembering the SF 10

material is a magnetic radar absorbing material which is designed to absorb radar

energy when placed on top of a perfect conductor, the surface impedance

required in the prediction (IBC) is different when the SF 10 material is placed on

top of the conductor. Therefore, the surface impedance measured in the

waveguide with the SF 10 material alone is not necessarily the correct impedance

value for the SF 10 on top of the conductor configuration. On the other hand,

the measurement and prediction for the SF 10 material on top of the perfect

conductor (figure 5.4) is only off at normal incidence by 0.5198 dBsm. This

agreement is good, but the prediction is higher than the measurement at

broadside. If the waveguide measurement for the surface impedance would of

been with the SF 10 material on top of the conductor, the surface impedance used

in the prediction for the SF 10 on top of the conductor have been different and

more representative of the surface impedance seen by the incident wave during

the measurement. Therefore, when modelling the surface impedance of a
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configuration, the effective surface impedance is required in the prediction, not

the surface impedance of the outer layer of the configuration. In addition, if the

effective impedance of the configuration was not measurable then transmission

line theory could be used to find the surface impedance for a multilayered

configuration.

Figure 5.5 shows the measurement versus prediction for the SF 10

impedance strip and H-polarization. The prediction is low in the mainbeam by 2

dBsm and the shift in lobe structure in this plot is more prominent than exhibited

in other plots. An explanation is the formulation is not accounting for the surface

waves on the strip well.

As noticed there are no predictions for these materials for H-polarization

with conducting backings, this is because the code gave incorrect values for the

scattering. The measurements for this case were made but are not presented

because of the inaccurate predictions achieved. The cause of the inaccurate H-

polarization predictions may be contributed to a numerical problem in the

prediction. For H-polarization, the equation sin 0 = 1/;l must be solved for 0.

The problem occurs in solving for the complex angle 0 when 1/17 is large.

Figures 5.6 through 5.8 are the predictions against the measurements when

the impedance material is FG 40 for an impedance strip for E-polarization,

impedance strip with conducting backing for E-polarization, and impedance strip

for H-polarization, respectively. All three figures show the same discrepancies

between measurements and predictions as the case when the strips were made of

SF 10.
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Loaded-Impedance . Figures 5.9 thru 5.20 are the comparisons

between predictions and measurements for all impedance loaded-strip

configurations. The materials used for loading where SC 100, VF 10, SF 10, and

FG 40. As a reminder, the loaded strip configuration is a 21 perfectly conducting

strip with 1). impedance loads attached (2 inch by 1 inch conducting plate with 1

inch by 6 inches impedance loads). These 41 loaded strips were measured and

predicted for a perfectly conducting backing and without a perfectly conducting

backing.

Figures 5.9 thru 5.12 show the comparisons between the measurements and

predictions for both polarizations when the loads are the SC 100 and VF 10

materials. All of the predictions in figures 5.9 thru 5.12 are low in the mainbeam

by 2 dB or less except for figure 5.9 where the prediction and measurement agree.

The prediction for the SC 100 loaded strip and E-polarization, figure 5.9, shows

excellent agreement with the measurements for all angles. The prediction for the

SC 100 loaded strip and H-polarization is off by 2 dBsm in the mainlobe, but the

sidelobes for 50 degrees or more show good agreement with the measurement.

The predictions verses measurements for E-polarization and H-polarization when

the strip is loaded with VF 10 are in figures 5.11 and 5.12, respectively. For both

polarizations, the predictions accurately predict the first two sidelobes in

placement, but the sidelobe levels are off by 5 dBsm or less. In addition, for both

polarizations, the mainbeam prediction is low. Figures 5.13 thru 5.16 are the

plots of the predictions vs measurements when the strip is loaded with SF 10

material for both polarizations and with and without a conductor backing. The
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prediction for E-polarization and no backing shows the best agreement with the

measurements when the load is SF 10. The prediction for E-polarization with a

conductor backing, figure 5.14, compares well to the measurement for angles 50

degrees or greater. The H-polarization predictions, figures 5.15 and 5.16, do not

compare to the measurements as well as the E-polarization predictions to

measurements. Both H-polarization plots for SF 10 loads with and without a

perfectly conducting backing exhibit the shift seen in the impedance strip

predictions to measurements. In general, the conductor backed predictions do not

compare as well as the non-backing predictions to the respective measurements.

This may be explained by the surface impedance used to model the loads when

the impedance loaded strip is mounted on top of a conductor backing not

accounting for the change in surface impedance when a magnetic radar absorbing

material is on top of a conductor. This change in surface impedance for a

magnetic radar absorbing material was discussed in the impedance strip section.

Figures 5.17 thru 5.20 are the plots of the predictions vs measurements for

the loaded strips being FG 40 material for both polarizations and with and

without a conductor backing. The same trends are shown in these plots as in the

case when the loads are SF 10 material.
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VI. Conclusions

Summary

This thesis investigated the scattering from impedance strips and

impedance-loaded strips. The scattering from impedance strips was analyzed

using the non-uniform primary diffraction and uniform secondary diffractions

derived by Herman (5) for an impedance strip. Herman (5) derived a non-

uniform primary diffraction for an impedance half plane from Senior's (19)

impedance half plane formulation. Uniform secondary diffractions up to the third

order on an impedance strip were derived by Herman (5) using the Extended

Spectral Ray Method (ESRM).

The scattering from impedance loaded strips was analyzed using the non-

uniform primary diffraction and uniform secondary diffractions derived by

Herman (5) for an impedance polygon. Herman (5) derived a non-uniform

primary diffraction for an impedance wedge from Maliuzhinets' (12) impedance

wedge formulation. The uniform secondary diffractions up to the third order on

the face of an impedance double wedge were derived by Herman (5) using the

ESRM. A secondary diffraction which diffracts at three vertices before returning

to the observer on an impedance polygon was derived by Herman (5) using the

ESRM. This secondary diffraction is called a three vertex secondary diffraction.

This secondary diffraction for an impedance polygon was revised in this thesis so

it could be applied to an impedance-loaded strip.

Both the impedance half plane formulation and the impedance wedge
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formulation use the Impedance Boundary Condition. The equivalent surface

impedance was assumed constant for all incident angles in the diffraction

mechanisms derived by Herman (5). For the predictions compared to

measurements, the equivalent surface impedance was assumed to be the measured

normal surface impedance of the material.

In this thesis, a Fortran code was written to predict the scattering from an

impedance strip loaded with up to 100 loads. The diffractions mechanisms

derived for the impedance double wedge and the revised three vertex secondary

diffraction were used in the code. Herman (5) has written Fortran codes to

predict the scattering from impedance strips and impedance polygons. Herman's

(5) codes were used in this thesis to make predictions for impedance strips with

and with out conductor backings and loaded impedance strips with conductor

backings.

Using Herman's impedance strip program and the developed impedance

loaded strip program, several impedances and one loading scheme were

investigated for scattering reduction by replacing a perfectly conducting strip with

an impedance strip or an impedance loaded strip of equal length. The

impedances and loading scheme chosen are not intended to be optimum. The

impedances considered were large purely capacitive, large purely inductive, large

real, and small real. The scattering for both strips using the capacitive and

inductive impedances were polarization dependent. The impedances provided

reduction in scattering for one polarization, but an increase in scattering for the

other polarization. For the impedance strip, the real impedances provided
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reduction in scattering for both polarizations. For the loaded impedance strips,

the large real impedance formed a null at broadside, but the sidelobes in the

scattering patterns were increased for both polarizations. The small real

impedance provided reduction in the mainlobe, but the mainlobe beamwidth was

increased for both polarizations.

Measurements were made to determine the accuracy of the diffraction

mechanisms used in the predictions for impedance strips with and without a

conductor backing and impedance loaded strips with and without a conductor

backing. The impedance strip predictions compared well to the measurements for

mainbeam levels and sidelobe structure. The impedance strip predictions agreed

better to the measurements for E-polarization than H-polarization. The

predictions for the impedance loaded strips with and without a conductor backing

also compared well to the measurements for mainbeam levels and sidelobe

structure for angles of 55 degrees off broadside. The predictions also were better

for E-polarization than H-polarization. The differences in all predictions

compared to the measurements are attributed to the equivalent surface

impedance used in the predictions being modelled as a constant (not a function of

incident angle) and being modelled as the normal surface impedance of the

material.

The impedance wedge formulation provided predictions which compared

well to measurements when the materials were resistive materials. On the other

hand, the impedance half plane formulation did not give accurate predictions

compared to measurements for resistive materials. This result is not explainable.
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Recommendations for Further 51Vdy

The applications of tapered loads on perfectly conducting strips to reduce

the scattering of a perfectly conducting strip can be investigated. The code

written in this thesis for impedance loaded strips can be used in the analysis.

The equivalent surface impedance of a material could be modelled as a

function of incident angle to achieve better accuracy in the predictions.
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